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CHAPTER 1

INTRODUCTION

The realizaticn of machins recognition of pictorial data has long
been a challenging goal, but has seldom been attempted with anything
more complex than alphabetic characters. In this thesis the task of
recognition of three dimensional ocbjects from their optical images is
considered from the view of identifying and estimating the translation
and rotation of the object with respect to a given reference frame.

The approach presented here makes use of the theory of two-
dimensional moment invariants for planar geometric figures developed
by Ming-kue Hu (1]. Complete systems of moment invariants under trans-
lation, similitude and orthogonal transformations are derived. By
carefully utilizing these properties, a sample set is constructed in
which each sample 1s represented by a vector which characterizes the
image for a certain orientation of some object from the given group.

A pattern recognition technique is then described in whici a parametric
representation of the input signal is employed. Tile decision process
using typical semrles partitions the space into regions that envelop
the chosen samples of a class. A simulation program based on the alove
outline is successfully deveioped which not only identifies objects,
but also determines their ovientation and position in space.
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In this research three different objects, a F-4B PHANTOM 1I,
a MIRAGE IIl C, and a MIG 21 aircraft, were considered. The models of
these aircraft of scale 1 : 72 are mathematically represented by a
"wire model" structure {2) by considering a finite number of points,
called nodes, on the body of the wodel. These nodes are inter-
connected to approximate the curved and planar surfaces on the body of
the aircraft by a number of straight lines. A simulation program
is used to generate the computational model of the silhouette of the
aircraft for any position and orientation in space. Certain invariant
properties of these images, as mentioned earlier, are used for the
conatruction of the sample sets. Different amounts of nolse were
added to the points on the boundary of the simulated image to learn
about the performance of this method when using unfocused, hazy or
unclear optical images.

Besides the identification of aircraft, this approach can also
be used for various other problems. A television camera onboﬁrd a
docking space craft can take a picture of a docking target and thus
after estimating translation and rotation, the docking craft can
position itself for automatic docking. In addition, this approach can
help in developing a robot eve for use on automatic assembly lines in
industries.

A review of different paitern recognition techniques related to
this research appears in Chapter II. The prcoblem formulation along '
with a complete set of inveriant moments is presented in Chapter III.

In Chapter 1V, the computational results including the etfect of noise

5 Bl - =




on parameter estimation are given. Conclusions, a summary of the
results, and future research areas are discussed in Chapter V,
Finally, Appendix I presents documentation of computer programs at

. the end of the thesis.
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CHAPTER 11

SURVEY OF PREVIOUS WORK

2.1 Introduction

Munson (3] describes the pattern recognition process in termsa of
the followinp three stages where each is considered as an indenendent
coxponent:

TRANSDUCER -+ PREPROCESSOR - CLASSTFIER.
However, considering the first step, "it is doubtful if recognition
occurs before the eyes are directed toward a (known) object, sirce
otherwise we would not bother to look at the object” [4]. Thus it
vould seem reasonable to use the raw data in the form of the image as
bulk memory and allow the transducer to search for "reglons of interest”
{5]. In considering the three stages, thc literature overwhelmingly
concantrstes on tne various aspects of classification. 1t is here
that a substantial objection can be raised. Is not the more sig-
nificant part of the problem that of characterizing the world by a set
of properties that provide the desired discrimination? In fact
Selfridge [6) defines pattern recognition solely in terms of "the
extraction of significent features frow a background of irrelzvant
detail.”

Kazmierczak and Steinbuch {7) state that '"the human visual system
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is capable of selecting features or criteria from a pattern where the
statement of the description would be independent cf registration,
skew, size, contrast, deformation, or other noise 2ffects.” What is
needed according to Duda [8] are ''rugged features”. A rugged feature
18 one whose presence is not changed, and whose characteristics are
not greatly altered, by normal variations in the image of a character
in a given category.” It is emphasized, and this is an important
point, that no general theory exists to allow us to choose what fea-
tures are relevant for a particular problem. With these comments in
mind, the object of the rest of the chapter is tc present a discussion
of a few computer methods and algorithms used in conjunction with image
analysis,
2.2 Contour Tracing

Jne of the approaches to reduce the amount of data in a picture
involves scanning a picture and tracing a contour or outline of the
figure and then basing the recognition or classification decisicn c¢n
this information {9). It is well known [10], that "contours carry a
ignificant fraction of the information vequired for recognition of
image ohjects." Examples of this approach applied to character recog-
nition are discussed in the literature [11]) - {13].

Hemami, McGhee and Cardner (1l4] in their paper presented an
algorithm which uses the information contained in the boundary of the *
pattern by successively reading the coordinates of the boundary and

developing a nonlinear regressicn analysis technique for simultaneous .

estimation of rotation and translation of the image objects. One of




the.advantages of using a contcur description is that the latter is
independent of shape, translation, size and rotation (15].
2.3 Conic Section Approximstion
Here wa consider shepe description in terms of conlc sections.
An individual pattern is defined as & non-negative functior, f, on the
" rea). plane, subject to certain constrainte on position, size, orien-
tation, etc. In a given Sramc of reference any conic section may be

uniquely represented as
2
Q(x,y) = ax + 2hxy + by2 + 2gx + 2fy + ¢ « 0, (2-1)

where az + bhz + b2 + 432 + 4f2 4+ ¢ =» 1 and the first non zero element
of the vector ( a, 2h, b, 2g, 2f, ¢) is positive. Such a vector wili
be referred to as a conic vector.

The true Euclidian distance from a point (u,v) to the nearest
point on the conic Q(x,y) = 0 is a troublesome quantity to evaluate,
and we use instead the quantity |[Q(uv)|, which vanishes on and only on
the conic and, loosely speakiné, takes larger values for points (u,v)
further from the conic. The weighted squared discrepancy between the

pattern, P, and the conic may then be defined as
2
D= [[P(u,v) |Quv)|” du dv, (2-2)

and the "best” conic is that for wkich D is the least. This problem

may be formulated as an eigen value problem uf order six, the conic
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vector corresponding to the smallest root defining the best conic [16]).
The best conic approximation has been used by Paton [16] as a
discriminator in chromosome analysis. An example of a best conic

approximation to a certain chromosome pattern is shown in Fig. 2.1.

pest comc minor axis

pottern poundary

principal axis

paottern
centroid v

S~

\\ — — —
best conic best conic

mojor axis

Figure 2.1 Line Drawing of a Chromosome Pattern and
its Best Conic Approximation

2.4 Shape Descriptors

Intuicively, it is preferable to describe an object using gross

St =

Py




properties rather than local or neighborhood descriptors. Shape de-
scription is undoubtedly one of the most important aspects of pattern
recognition. It is desirable in many applications to describe the

structure of an object independently of orientation, translation or

Meiadiinadel e Y NS

even some types of distortion. Interesting discussions regarding
! recognition of shape and their computer models can be found in papers
of Blum [17], (18].

Based on some shape description theories, an interesting shape
descriptor referred to as a wmedisl axis transformation (MAT) was
developed by Blum {18). He describes the generating model which 1is
used to define MAT: " Consider a continuous isotropic plane that has

the following properties at each point: 1) excitation - each point

can have a value of 0 or 1, 2) propagation - each excited point excites
an adjacent point with a delay proportional to the distance, and 3) .
refractory or dead time - once fixed, an excited point is not affacted
by a second firing for some arbitrary interval of time. A visual
stimulus from which the contours or edges have been extracted impinges
on such a plane at some fixed time and excites the plane at those
points. This excitation spreads uniformly in all directions but in
such a way that the waves generated do not flow through each point."

The MAT is then defined as the locus of the corners in the wave-

R AR dladh ol A e ot s inde s d et Zoa N dnhalins g dld

: front. The (propagating) contours have been likened to the front of
i a grassfire ignited on the pattern boundary and the MAT is then the

f locus of points where the fire is extinguished. Several examples of

c MATs are shown in Fig. 2.2. Note i‘hat, if the MAT turns out to be a :

|
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Figure 2.2 Examples of MAT Transformation

Figure 2.3 The MAT for Both a Simple Sketch
and a Distorted Version of a Man




10

straight line, then the shape of the object under consideration is
symmetrical. The gross properties of the transformation are cbviously
related to the macircscopic and structural properties of the pattern.
This is demonstratec by Blum [18] using both a sketch-like represen-
tation of a human aad its distorted version as shown in Figure 2.3.
The basic properties of the MAT remain unchanged.
2.5 Moment Transformations
A set of two-dimensional moment invariants have been found by

Hu {[1]. Based upon these moment invariants, a pattern-recognition
theory has been formulated which considers two patterns to be similar
if they differ at most in the following respects:

{A) Location

(B) Size

(C) Orientation
With the help of moment transformations, we can find a pattern function
as a number m = F(P) associated with each pattern, P, which is

(a) invariant under (A) to (C), i.e., it patterns P; and P;
are similar according to (A) to (C) then F(Pl) - F(Pz);

(b) characteristic of dissimilar patterns, i.e., if patterns
P, and P, are not similar according to (A) to (C) then F(P,) d F(P,);

(c) easy to compute.

If such a function cannot be found, then one might try to use

several functions Fj(P), F5(P), ..., which satisfy (a) and (c), though

not (b), irn the hope that for any given pair P_ and P, of dissimlilar

1
patterns, at least one of the functions F,(P) would give Fi(Pl)*Fi(Pz).
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The latter is the approach we propose to follow.

2.5.1 Definition of Two Dimensional Moments
Let there be N points equally distributed along the boundary of

a certain pattern as shown in Figure 2.4.

Figure 2.4 Discrete Representation of the Boundary of a Pattern k

Let the coordinates of these points be (xl,yl), (xz,yz), cens (xN,yN).

Then the two dimensional (p+q)th oxder moments are defined as

N
IxPy %, pra=0,1,2, ... . (2-3)
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Also let (;,;) be the centroid of the given pattern. Then, ! i
o I
Nex = 2 x4
im] 3
]’ !
;
H
or
| g I %
x = Xy = mg . (2-4) i
N i=] :
Similarly )
y = Mgy - (2-5) .- *
2.5.2 Central Moments
The central moments are defined as {
. o
- = - %) . - Lot
U T W Jx-0" &y -9 (2-6)
i=1 :
i
ce
where :
; bl mlo » ;. - m01 B (2"7)

It should be noted that Uy = Yo " 0. Now, let us consider the effect .

of translation on these central moments. Let B

x' = x +a (2-8) |

Yi' = y; + R (2-9)
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where a, B are constants. Then,

mo - Xy

L))
[}
n
+
=4

P Similarly

y' = y+8 .

central moments under translation.

N

' Upq' ® éizl(xi'-x')l’ (y'-y"9

!

o

o 1§ z-a)P v-8)3
} - = -y -

\ 3 151(xi+° x-a)" (ys+8-y-8)
Lo

E - " Ypq

b

Thus the central moments are invariant under translation,

et e
e et e T —

L
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(2-10)

(2-11)

(2-12)

Using this new centroid of the pattern, let us aow calculate the new

(2-13)
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From Eq. (2~6) it is quite easy to express cerntral moments in

terms of ordinary moments, For the first three orders,

Yso ™ oo " 1 (2-14)
Yoy = Yo * O (2-15)
u = m - (m )2 (2-16)
20 20 10
u_ = m_ - (m )? (2-17)
02 02 = o1
U = m -dmom_ +2(m )] (2~18)
10 30~ ""20™10 10
- - ) 2 A
Uy T Wy T ByeBpy T 2By Mg * 2(my ) my, (2-19)
2
. - - - + -
412 m12 mOZ“lO 2m11m01 2(m01) L (2-20)
- - 2 -
Upy = Ty ~ 2@y @y + 2(my,) (2-21)

From here on, for simplicity of description, all moments referred to

are central moments and Ypq will be simply expressed as:

1 ¥ q
a = P . -
upq N 1§1Xi yi (2-22)
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2.5.3 Similitude Moment Invariants
Under a similitude transformation, i.e., change of size, we
have
x' y O x
a s+ Y = conatant (2-23)
y' 0 v y
Let us now calculate the new central moments uéq after the transfor-
mation.
L Y p e
! - = x,'P oy’ (2-24)
i
Yo 7§ L
1 N
- 5 z YP xiP Yq yiq
i=]
Pﬂl?pq
- X Y4
Ll i=]
or
' pHq N
- =25
“pq T Y pq (3-23)

Therefore we have the following absolute similitude moment invariants:

:2q “upq s PHa=2,3, ... (2-26)
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Using similitude invariants of central moments, pattern identification
can easily be accomplished independentily of translation and size.

2,5.4 Orientation Moment Invariants

Under the orthogonal transfoimation of rotation,

x' = xcos 8 -ysine , (2-27)

y' = xsin o +y cos 6 . (2-28)

Thus, the nev moments under rotation will be as follows:

1 ¥ .0,
L - 1 t
Fa T 7
1 N
= = z (xco88 ~ ysin®)P {(xsin® + yeoas)d
N {w)
(2-29)
1§ ,p q
Upg " i-izlx y (2-30)

It can be shown (1] that the three second ovrder moments satisfy the

following relations:

2uy," = (upg - ugy) 81028 + 2uy;cos28 , (2~31)

uye' tugy' T uyp tugy (2-32)
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‘ 2 2
(“20 - “02) + 4“11 . (2-33)

VoL 2 132
(ugg' = ugy )™ + 4luy
There are two ways of using Eqs. (2-31), (2-32) and (2-33) to accom-
plish pattern ideatificarisn independently of orientation:
(') The mathod of principal sxes: 1if the angle & is deter-

mized frux the equation (2-31) to make ulll = 0, then we have,
tan 26 = =~ 2u;,/(uyg - upy). (2-34)

The x', y' axes determined by any particular value of 6 satisfying
Eq. (2-34) are called principal axes of the pattern. With addied re-
striction, such as “23‘ > “oz' ad “33‘ > 0, 8 ¢can be determined
uniquely. Moments Jdetermined with respret to ruch 2 pair of principal
£xes ore independernt of crientaticn,

+B) The method of orthogonal mowent irvariants: the twvs
relatiore Eqs. (2-32) and (2~33) are¢ inveriant under rotation, and
th2y cd4n be usea dlcectly foc orientation-.independent pattern identi-
fication. Let these two invariusnt relazicrns e called M; and H,
respectively. The discriminativu property caq also be increased by
inclvding higher-orl2ar memeut invariants. For third~order moments,

ve ¢cn show tonat thz follcwing four expressions are invariant under

orthogonal transforuation.

My = (uyg = 3uppi2 + (Buyy = upg)? (2-35)

N ot s, i

~ -
[

1

T A i B A 2 S 2 bedises, Bt
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Moo= (uin +u )+ (u, +un.)? (2~36)
4 30 ¥ ¥ 21 % Vo3
2 _ - 2
Mg = (uzg = 3upp) (uzg +upp) [lugg + uyp)® = 3Cugy + ug)”]
+ (3\]21 - \103) (U2l + u03).‘3(“30 + U12)2 - (‘-\21 + %3)2}
(2-37)
2 3
Mo = (ugg = ugy) [(ugg + uyp) - (ugy + ugy)”)
(2-38)

+ duyy (ugg + ugy) (ugy + ug3)

Similarly, higher~order orthogonal moment invariants can be
derived. 1In fact, it has been found that there exists = complete
system of infinitely many such invariants {1].

It is interesting to note that in the above methods, because
of complete orientation independence property, different patteras
which could be obtained from each other by just proper rotation, such
as '6' or '9' can not be distinguished. if the given pattern 18 of
circular or n-fold rotational symmetry, then the determination of 6 by
Eq. (2-34) breaks down. This is due to the fact that both numerator
and denominator are zero for such patterns.

2.6 Sample Set Construction and Linear Separatibility

Based on the features axtracted from the optical image or the
pattern, one can form a sample set which characterizes classes from a
small number of their members. In addition to this, pattern recognition

techniques must perform a basic function of recognizing a new input
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stimulus and classify it as a member of one of several classes.

Machine learning, the automatic accomplishment of classification, re-
quires partitioning the vector space into regions so that each region
should contain mostly members of a single class. The regions so con-
structed characterize the classes. The block diagram shown in Figure
2.5 illustrates a general pattern recognition system that exhibits the

functions discussed above [19]. The parameter extractor is used to

decision
parameters _7 crossesﬁ
M|
parameter | ¥2] decision “

extroctor : device :
Yu [t Cx

environment “tearnming”
mochine

Figure 2.5 General Pattern Recognition System

represent the machine's environment as a vector in an N-dimensionul
vector space. Machine learning is employed to determine, from

sample inputs, the best method of partitioning the epace into differ-
ent decision regions, and the decision device, which implements the
regions designed through machine learning, evaluates new input stimuli
and classifies them according to the region in which they are con-
tained.

Most of the machines used ave linear, ecpleying only linear
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discriminants, i.e., correlations with stored reference vectors or

comparisons of weighted combinationa of the parameters. Hyper-~

planes are used toc partition the space of measurable input parameters

to separate members of one stimulus class from those of ancother.
Combinations of these linear techuniques with logical rules, can con-
struct boundaries to quite complex distributions. In many practical
problems the classes are not linearly separable (not separable by
hyperplanes) and their members are not contained in diejointed simply- S
connected regions of space of obaervable parameters. In these cases,

better decision rules than those provided by linear discriminants

should be used to minimize the probability of decision errors [1¢]. ?,
This is illustrated in Figure 2.6 where members of different classes
are contained in reglons labeled A and B. These classes are linearly
separable in Figure 2.6a but not in the more complex distribution

shown in Figure 2.6b.
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Figure 2.6 Different Distributions of Two Classes

I
I
1
i




21

2.7 Recognition of Three-Dimensional Objects

The schemes developed by many authors for the recognition of a
salid object from its optical image require the perspective trans-
formation of a three-dimensional field, with hidden lines removed.

The perspective projection is used to fit the given picture. The
computer oriented techniques of forming perspective projection of a
givea object are presented by Weiss {20), Comba [21] and Loutrel [22].

Guzman (23] and Winston [24] in their work in the field of
recognition of three dimensional objects developed a acheme which re-
cognizes the objects irrespective of their translations and rotations.
They consider a three-dimensional structure composed of bricks, wedges
and other simple otjects. It is asgsumed in their work that a pre-
processing of some sort has taken place, and the picture to be analyzed
is available in a symbolic format of points, lines and surfaces. The
recognition acheme identifies the object from its picture by selecting
a combination of surfaces and relating it to an object.

The only two pattern recognition schemes in the literature, to
the author's knowledge, which deal with the estimation of three trans-
lations and three rotations associated with the object, are developed
by Roberts (25] and Advani [26]. Roberts {25) in his work assumes
that the objects seen could be constructed out of some familiar parts,
called the models. The procedure atarts by first converting the pic-
ture into a line diagram; then the points in the line diagram which fit
a transformation of some model are found. This model has a set of

topological equivalent points. Finally the mean-square error
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minimization technique with gsome threshold is used to eliminate models
which fit the picture topologically, but do not fit exactly without
being deformed. This scheme does not yleld the depth information buc
relies on a support theorem for the purpose of estimating the depth
or the translation along the optical axis of the camera. This theorem
requires the object in the scene to be supported by Lhe ground or
another object resting on the ground. This is one of the disadvantages
in Roberts' recognition algorithm.

Advani {26] developed an algorithm to estimate the three trans-
lations and three rotations of an object from its silhouette by the
uge of regression analysis. Advani, in his work, synthesizes the sil-
houette for ¢ certain translation and rotation, and then tries to
match this synthesized silhouette with the given cilhouette of the
object with unknown translation and rotation. Advani's method is
fairly accurate, even in the presence of large amounts of noise, but
the main drawback of this algorithm is that it takes a much longer time
for recognition than what would be needed in many practical appli-
cations. A new technique for recognition of three dimensional objects
is developed in this research which has the potential of reaching real

time identification.
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CHAPTER III

PROBLEM FORMULATION

3.1 Introduction

The problem which concerns us may be stated as follows: a
digitel computer receives an optical image of a three-dimensional
object, and on the basis of this information it has to identify the
object and estimate its position and orientation in space.

It 18 assumed here that it i1s possible to obtain the silhouette
of the picture through some type of preprocessing of the optical image
[{5]. On this silhouette a number of equally spaced data points are
generated and used for the calculation of moments. Using these
moments, as mentioned earlier, the computer should assign the image
to a certain object, and estimate the six parameters to be defined
later in section 3.4.

3.2 Transformation of the Real World

The first assumption here is that the picture is a view of the
real world recorded by a camera or other comparable device and there-
for. that the image is a perspective transformation of a three-
dizensional field. This transformation is a projection of each point
in the viewing space, toward a focal point, onto a plane. The trans-
formation depends on the camera used, the enlargement printing process,

23
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;

and, of course, the coordinate system the real world is referred to. *

Let us fix the real world coordinates X, Y and Z by assuming that the T
focal plane 1s the Y = -2f plane, that the focal point is at X = O, _: i
, Y=«f, Z =0, and the optical axis is colineer yith the Y axis. In _" ’
order that the picture not be a reflection, we choose the focal plane - §
in front of the camera. Thus the focal plane is raally the plane of . j
the print, not of the negative. Let U and V represent the coordinates v ;
on the focal plane of the projections for the points in the real - ;
vorld. This arrangement is shown in Figure 3.1. -_ {

aeti : %V
Projection of point ' o -
Foint 0 the s
(Xi,Y;,Z;) on the - real ulvorld ;
focal plane (X;,¥;, ;)
k-
Focal point ViU, V) ,_._—-———-'H—"—"‘"———_’
(0,-1,0) o R
i (0,0,0) o Y
) ;(Ooticol
: : | oxis)
! \ 1
1 \ ]
\ focal piane :
| !
i t
e f - Yi —
) '
] " :

FAY

Figure 3.1 Cawera Transformation

, Let (X4, Yy, Z;) be a point in the viewing space and Uy, Vy)

be its projection on the focal plane as shown in Figure 3.1 This

I
l
l
I
|
:
i
i
i




25

transformation is shown below:

£
uy - CoXy -1
1 Y, + 1 1 3-1)
v - f . -
L A (3-2)

where, f, 18 the focal length of the camera.

3.3 Mathematical Representation of Three-Dimensional Objects
with the Wire Frame Structure

The mathematical representation of the three-dimensional object
is achieved by selecting & number of points, depending on the com-
plexity of the structure, on the body of the prototype model of a
given scale. These points are referrad to as nodes. These nodes are
then appropriately interconnected to approximate the planar and curved
surfaces on the body of the object by a number of straight linee. This
results in a so called "wire-frame" structure [2], because the straight
lines could be considered as wires connected between the fixed points
{nodes) which form the frame. The connections between different nodes
can be mathematically expressed by a connection matrix in which each
TOw represents a certain node, and therefore the connection matrix has
the same number of rows as the nodes selected to construct the wire-
frame structure, The different column entries for each row in the
matrix show the nodes connected to the on2 represented by the row. The

trailing zeroes in a row show that no more nodes are connected to the
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node represented by the row. One such example appears in Figure 3.2,

It {8 to be noted here that the ath row of the connection matrix,

represents the nth node of the object, shown in Figure 3.2.

8 -

, /.

\ w(———;—{w
| [l / )
: A
4 | { / ‘6
! 12 Ay
| W S
| 15
|
e H-fooft- 7
/ ¢l 10
/
7/
/ f

Connection Matrix:

2 3 4

1 S 6

1 S 7

1 6 7

b3 3 8

2 4 8

3 4 8

5 6 7

10 12 13

9 11 13

10 12 13

9 11 13

9 10 11 1
15 17 18
14 16 18

15 17 18
14 16 18

14 15 16 1

Figure 3,2 Wire Frame Structure and Connection Matrix

for a Winged Parallelepiped

3.4 Transformation Matrix

NVNOCOONOOOOODOOOO0OO0OO0OO

Let us fix a new coordinate mystem, xyz, tc the center of gravity

of the object to be identified. The coordinates of the nodes, selected
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on the bcdy of the prorotype of the object for the wire frame structure
representation, are measured with respect to this xyz coordinats
eystem. Let the M nodes, selected for a certain object to be identi-
fied, have the coordinates [(xi. Vs z4), =1, 2, ...y M]. At first,
let the three axes x, y and z of the coordinate system fixed to the
object be colinear with the respective exes, X, Y and Z of the real
world coordinates. This is shown by the transformation given below in
Eq. (3-3), which relates the coordinates Xy, ¥4 and z; of a node to the

real world coordinates X;, Y; and Z;.

Xy Xy
) - |y 11,2, ..., M. (3-3)
2y zy

The relative orientation of two arbitrary orthogonal systems can
te specified by a set of no fewer than three angles, usually called
Euler angles. Although the concept of the Euler angles is universally
used in several applications, there is no agreement on the definition
of the Euler angles. There are a large number of possible choizes for
the three angles required to define an Euler set of angles [27)]. A
particular set of Euler angles 15 selected here with the aim of obtain-
ing moment invariance with one of the angles of the set. The trans-
formations for the set of Fuler angles selected are shown in Figures
3.3 through 3.6. The symbolic representation used in these figures to

accomplish coordinate transformations 1s stralghtforward and is




discussed in [28). The three Euler angles 6, ¥ and ¢ are called the

elevation, azimuth a»d roll angles vespectively.

| ___O__P.,!.
1—’—0'——9 6 G—(F-t—y
z ..__O.—_y..l'

x = -z 8in 6 + x co8 6§
y -y
= 2z cos § +xs8in 8

Figure 3.3 Elevation Angle Transformation

g X
y ——O— N O—s—y"
Z'—"—‘w 0—-—0—2"

cos ¢ + v' sin ¢

sin ¢y + y' cos ¢

Figure 3.4 Azimuth Angle Trancformation
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/ Figure 3.5 Roll Angle Transformation a
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as shown below:

" -
x1] cosd O sind cosy —-ainy I !1 0 0 x4
Yi - 0 1 0 siny cosy O 0 co8d -8ind Yy
Zi -gind O cosb 0 0 1l 0 sing cosd L

forie1,2, ,,., M (3-4)

After giving the above orientation to the xyz system, let us translate
the origin of this system tc a point (A, B, C) with respect to the real

world coordinate system. The modified transformation is given below:

. 1 "
x1 cosb cosy -cosB siny cosd cos® siny sing Xy A ]
+ 8iné sin¢ + 8in6 cos¢
Y1 - siny cosy cosé -cosy singd Yy +| B
Zi ~-8iné cosy 6ind siny cosd =-sind siny sind zy C
+ cosd siné + cosd cos¢p | | | L]
for 1 =1, 2, ..., M (3-5)

With the use of this transformaticn matrix, each node of the
wire frame structure can be represented in the XYZ coordinate system,
given the three translational and the three rotaticnal parameters.

The projection of these M nodes can be obtained on the image plane and
used to construct the computstional model of the silhouette [26]). This
method of simulating the silhouette for a given set of six parameters

is used later for the sample set construction.
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3.5 Moument Invarianze with Angle of Elevation

It will be shown here that the silhouettes obtained for different
values of the elevaticrn angle, with the other parameters remaining the
ssme, are similar in size and shape but differ only in rotation. There-
fore the moment invariant functiona derivec in section 2.5.4 character-
ize this silhouette for the other given parameters.

It will be assumed that the optical axis of the camera is
directed to pass through the center of gravity of the object to be
identified, and thus the parameters A and C, defined earlier, will take
smaller values compared to the distance of the object along the optical
axis. This can be accomplished by using some kind of feedback system
vhich will change the direztion of the optical axis so as to bring the
centroid of the silhouette to the origin of the UV coordinate system.

The projection of a certain point in the viewing space onto the

focal plane is given by the following transformation

3

L S 7 T (3-6)
£

Vi = £ +Y1 Zi . (3-7)

where (Uy, V4) are the coordinates of the projected point in the focal

plane. With the assumption that tle parameters A and C are gmall in

Eq. (3-5), we have the following relations:
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Yy = (sind)xy + (cosy c0l¢)y1 + (-cos¢y sing)zy + B (3-8)
X = cos8 (cosy)xy + {-cosd siny cosd + sinb sind)yy
+ (cosd siny sind + sind cos¢)zy (3-9)
2, = -8inb (cosv)x; + (8ind siny cosé + cos® sind)yy
+ (~8in® sind siné + cosb coso)zi (3-10)

4 ey e mveere 7o
i —mr——

It is interesting to note here that Yi is not a function of the
elevarion angle 6 and hence remains the same for all values of 9,
given the parameters ¥, ¢4 and B. Thus the factor K = £f/(f + Y4) in
Eqs. (3-6) and (3-7) remains congtant with 6, for the given values of

Vv, ¢ and B, Therefore we have
U, = KXy , (3-11)
v, = XY, , (3-12)

where K 18 a constant. It can further be shown that the expression
2
(Xi + Ziz) is also not a function of the elevation angle 0, given the

assumption A = C = 0, Using Bqs. (3-9) and (3-10), we have

2 2
X"+ 24y = coazw xiz + (sinzv cosz¢ + sinzo)yiz

+ (cosz¢ + sinzw sin%)zi2 (3-13)
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Therefore, using this result along with Eqs. (3-1i) and (3-12), we
have
v+ vy? e k2xg? 4 22
= f(, ¢, B) (3-14)

This shows that when the elevation angle of a certain object is
changed, the lccus of the projection of each node of the object onto
the focal plane is a circle with the center as the origin. Thus we
can in effect say that the result of varying the elevation angle of a
certain object, on 4its silhouette, is just its rotation in the focal
plane, with no change in size and shape. Perspective projections with
different elevation angles, but with the same azimuth angle, roll
angle and distance along optical axis, appear in Figure 3.7. The
moment functions "1' Mz, "3' M&’ H5 and H6 derived earlier in section

2.5.4 are therefore invariant with the elevation angle 6.

M, = uyy +up, (3-15)

M, = (uog - upo)? + buyy? 3-16

2 20 ~ Y02 uy) (3-16)

H3 - (U30 - 3\!12)2 + (3‘521 - u03)2 (3-17)

- 2 2
Ml‘ (u30 + ulz) + (u21 + u03) (3-18)




(b) ¢ = 5°, 4 = 75°, 8 = =30°, B = 7000 ft., A =C = O

Figure 3.7 Perspective Projections for NDifferent Elevation Angles
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Me = ( = 3Uy4) (Uqn + Ugq) [(UqQn +u )2 - 3(uqy + u )2]
5 ujzpo T Y12 30 21 30 12 21 03

. 2 _ 2
+ (uyy = ugg) (uy) +ugy) » [3lugg +up)) = (uy) +ugq)°)

(3-19)

Mg = (upg - ugg) [(ugg + 41 )% = (uyy + upp?)

+ 4u  (ugg + uy,) (ug; + ugy)
114730 12 21 3 (3-20)

3.6 Moment Invariance with Distance along Opiical Axis

It is clear that as an object is moved along the optical axis,
the first order effect on the image is just a change in size. The
second order effect 1s that a few small portiona of the image may
appear or disappear when the object is moved along the optical axis.
This second order effect diminigshes as the distance of ths object from
the camera increases.

The radius of gyration, r, of a planar pattern is defined as

follows:

T o= (upg +ugp)? (3-21)

The radius of gyration is directly provortional to the size of the
image or inversely proportional to the distance of the object along
the optical axis. The size of the image here is defined as the mini-

mum radius of a circle required to enclose the given image completely




36

with its center at the centrold of the image. Thus the product RK of
the radius of gyration of the image and the distance along the optical

axis of the object is a constant.
RK = (ugg + upy)® « B (3-22)

Therefore the radius of gyration, r, should be used to normalize the
moment functions of Eqs. (3-15) through (3-20) to obtain the similitude
moment invariance. Using the results derived in section 2.5.3 con-
cerning similitude moment invariants, we have the following moment
functions invariant with the elevation angle 8 and the distance B along

the optical axis:

] (3-23)

H3' - -1? [(030 - 3“12)2 + (3“12 - UO3)2] (3'24)
b 4
M' = L [(uqg + up0)2 + (U, + uaa)?] (3-25)
4 r6 30 12 21 n3

MS‘ - % [(030 - 3“12) (U30 + uzl) {_(u30 + 012)2 - 3(021 + 003)2}
T

+ Guyy = upy) (ugy + ugy) {,3(“30 *upp)? - Cuy + vo3)’ ]

(3-26)
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1 2 2
Mg' = 3 [(uyg - ugy) {(“30 +uyp)e - (uy; +ug,) }

+ 4uyg(ugg + upp) (up) + ugy)] (3-27)

3.7 Elevation Bias Error

Let us consider a silhouette of an aircraft for a certain
orientation as shown in Figure 3.8. Let this pattern have a principal
axis as shown in the figure. This principal axis is the same as the
perspective projection of the x axis of the coordinate system fixed
to the ceater of gravity of the object or the aircraft in the present
case. Therefore the inclination of this principal axis of the pattern
with the U axis in the projection plane is the elevation angle 8. The

positive direction of 6 is shown in the figure,.

Ellipse fitted to the pattern

— Major axis of the ellipse

8:-Inclination of principal oxis

v

o . 8. = Inclination of major axis
L Principal axis of the pattern o )

He= Elevation bias error

Figure 3.8 Elevation Bias Error for a Pattern
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The inclination O of the major axis of the ellipse fitted to

the pat.ern can be found from Eq. (2-34), as shown below

tan 20“ - -2\!11/(\!20 - uoz) (3~-28)

with added restriction, such as “20' > “02' and u30' > 0, @, can be
determined uniquely from Eq. (3-28).

The elevation bias error, 6, for a pattern as seen from Figure
3.8, is defined as the difference between the elevation angle 6 and
the inclination 6, of the major axis of the ellipse fitted to the

pattern.

8, = 6 -8, (3-29)
It is interesting to note here again that as the elevation angle is
changed, the silhouette of the object just rotates in the procjection
plane and thus the elevation bias error, Bas remains constant for
certain given values of the azimuth asngle ¥, the roll angle ¢ and the
distance B along the opticecl axis. Since the first order effect on the
silhouette, when moving the object slong the optical axis is just a
change in size, we can say that the elevation bias error is nearly
invariant with the distance B along the optical axis.
3.8 Sample Set Construction

In sections 3.5 and 3.6, we have derived five different fun-

ctions of moments of the planar pattern, which are invariant with the
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elevation angle & and the distance B along the optical axis of the
object to be identified. Thus, these five functions of moments can
be used to provide a parametric representation of the silhouette of
the object for given values of the azimuth and roll angles in a five-
dimensional vector space. The moment functions Moy, Mg, My MS and Mg
of Eqs. (3-23) through (3-27) are of different orders. Invariant
moment functions of the same order should be used for the parametric
representation of the silhouette in order to give equal weight or

the same importance to each parsmeter used in the recognition pro-

cedure. Therefore, let

CP MZ' (3-30)

0, = (p*/t (3-31)

oy = mp*/® (3-32)
f4712

o, = (M) (3-33)

og = (M)4/8 (3-34)

and then, the vector § = (p)» 094+ 034 P, Pg) Tepresents the given sil-
houette in a five dimensional vector space.

A simulation program for obtaining the silhouette of a given
object for any translation and orientation [26] is used hevre for con-~
struction of the s:c.ple set. The possible range of variations of the

azimuth angle ¥ and the roll angle ¢ are discretized; and then for 211
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of the different combinations of these discretized values of the two .
angles with the values of A and C taken as zero, silhouettes are . %
generated from which the parameters °l' Pos Pas Pyus Pgs the constant
RK, and the elevation bias error 6, are computed. Thus a sample set
i8 constructed for a certain object and then repeated the same way
for the other objects to be identified.

3.9 Nearest Neighbor Rule for the Identification
and Estimation of thz Parameters

Let the vector 31 represent the ith pattern in a five dimensional
vector space from the sample set (31, nl), e e ey (gn, nn) vwhere the
ni's take values in the get {}q 2, ..., K }. Each ny 1s considered
to be the index of the category to which the ith individual belongs,
and each 31 is the outcome o0  the set of measurements made upon that

individual pattern. For brevity, we can say "31 belongs to ni" when

-

ve precisely mean that the ith individual, upon which measurementc Py

have been mazde, belongs to category ny.
A new palir (3, n) is given, where only the measureuent 3 is
nade, and it is desirea to estimate n by utilizing the information con-

tained in the sample set of correctly classified vectors. We shall

call

a nearest neighbor [29] ro 3 if

> + -+ -
min d{og, o) = d{o', o) 1=1,2, ...u. (3-35)
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The unknown input 3, by the nearest neighbor rule, belongs to
the category or the class n' of its nearest neighbor o' defined in
Eq. (3-35). A mistake is made when n' # n. TH8& mearest neighbor -rule
described here utilizes only the classification of the nearest neigh-
bor. The remaining n-1 classifications are ignored.

The computations iuvolved in this approach are fairly simple.
An alternative approach using linear separatibility of the sample set
into different clzsses could possibly be used for the identification,
but then the computations involved would be more complex and difiicult.
3.10 Summary

In this chapter we first considered the mathematical repre-
sentation of the object to be identified and of the optical system.
Some functions cof moments which are ipvariant with the elevation angle
0 and the distance B along the optical axis were used to characterize
the silhouette for the given values of the azim:th angle ¥ and the
roll angle ¢é. A procedure was then described to form the sample set;
then using this sample set a nearest neighbor rule useful for the
identification and the estimaticon of the parameters of the unknown

object wac discussed.
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CHAPTER 1V

COMF"}JTA}T IONAL RESULTS
4,1 TIntrodurtion

Wire Frame structure representation of three different aircrafe,
a F-43 Phantom IT, a Mirzge IIIC, and a MIG 21 1is presented in this
chapter. The moment functions which are invariant with the elevaticn
angle and the distance along the optica) axis, éerived in Chapter III,
are then analyzed. Using the paiametric representation of tle si)-
houettes generated, the coastruction of the sample a2t for the thrze
aircraft considered is shown. The results obtained by the application
of the nearest neighhor ruia described in Chapter ITY for the ideuti-~
fication and estimation of parameters are pregented later in this
chapter. The effect of noise on ildentification and estimation is alsc
studied.
4,2 Wire Frame Structure Repregentation

Prototype models of acalzs 1:72 are uzed for the purpase of
obtaining the wire frame structure representation of the three differ-
ent aircraft considered. A numbev of points called nodes are selected
on the body of the prototype o represer.t the three dimensional objects,
or the aircraft, in the present case. The number of nodes required and
their positions on the body of the prototype for a complete and fair
representation of the three dimensional object depends on the object's

42
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complexity. It is obvious that the number of nodes necessary to
represent a curved surface would be more than that necessary to rep-
resent a planar surface. The ;omputation time required to generate
the silhouette for a certain given translation and rotation increases
more than linearly with the number of nodes selected.

The coordinates of the 79 nodes selected on the Phantom F-4B
aircraft, with respect to the center of gravity of the aircraft, appear
in Table I. The connection matrix for these nodes selected 1s given

in Table 1I.

TABLE 1

COORDINATES OF THE NODES FOER THE PHANTOM AIRCRAFT
(With Respect to Its Center of Gravity and in Feet)

Node X y z

1 4,46 -1.37 5.21
2 4,46 1.27 5.21
3 26,04 -2.03 -0.92
4 26.04 Z2.02 -0.92
5 26.04 ~2.03 1.33
6 26,064 2.03 1.33
7 18,32 -2.9¢6 ~2.20
8 18.32 2.9¢6 -2.20
9 18032 '3075 -2001
10 18.32 3.75 -2.01
11 17.85 -3.7% 2.06
12 17.85 3,75 2.06
13 17.61 -2.59 2.49
14 17.61 2,59 c +49
15 10.28 -2.,44 -2.49
16 10.2¢8 Q.64 -2.49
17 | 10.28 -4.29 -1.67
18 10.28 .29 -1.67
19 13.21 -4,53 1.83
29 13.21 4,53 1.63
1 3.5C -4,53 1.83
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TABLE l--Continued

Node X y z
22 3.50 4.0 1.83
23 3.7 -4.53 3,03
24 3.50 4.53 3,03
25 -1.32 -4.29 -1.20
26 -1.32 4,265 -1,20
27 -5.28 -4 .53 2.52
28 -5.28 4.53 2.52
29 =-1.4% -12.56 2.67
30 -1.,446 12.56 2.67
31 ~l.446 ~-12.56 3.27
32 -l.t4% 12.56 3.27
33 3.56 ~12.5¢6 2.48
34 3.56 12.56 2.48
35 -6.45 -12.5¢ 2.85
36 -6 .45 12.56 2.85
37 ~5.22 -19.51 1.04
38 -4,22 19.51 1.64
39 -7.63 -19.51 1.64
«0 -7.63 19.51 1.64
41 -6.6C -3.39 ~2 .41
62 -6,66 3.30 -2.41
“3 -3.647 -3.52 ~0.64
44 -9.47 3.52 -0.64
45 -9,04% -4.26 vel?
46 -9.04 4.26 G.17
97 -9.04 -3.78 3.02
«8 -9.06 3.78 3.02
9 -14,.89 -2.27 -2.15
50 -14.89 2.27 -2.15
51 -19.36 -1.89 -2.43
52 -19.36 1.89 -2.43
53 ~-19.36 -1.89 -1.83
5S4 -19.36 1.89 -1.83
55 -22.66 =i .47 -1.80
Se -22.66 1.67 -1.80
57 -20.98 -11.50C -1.10
St -23.98 11.50 -1.10
59 -22.90 -11.50 -1.10
60 -22.90 11.50 -1.10
6l -14.69 -0.60 -3.,38
62 -14.69 0.60 -3.98
63 34,43 0.0C 1.06
66 26 ,0¢ 0.00 -1.62
65 26,064 0.0C .49
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TABLE 1--Continued

Node X y z

66 22.3¢ 0.0¢C -3.7¢

67 18.0¢4 0,00 -4,50

68 13.¢21 0.0¢C 2.49

69 _ =13.¢1 3.3C -5.98

10 | -6.66 J.00 -3.98

71 ~22.97 0.0C =-3.10

72 -18.52 0.00 -9.58

73 ~22.78 u.00 -9.75

7“ ‘23-48 U;OO '2028

76 12.70 0.00 2 .49

17 14.87 0.00 4,44

1¢ -5.99 0.00 4,44

79 4,.7C 0.0C 2.49
J

TABLE 2
CONNECTION MATRIX FOR THE PHANTOM AIRCRAFT
Node Nodes Connected To

1 76 719 77 78 0 0 0
2 16 79 17 78 0 o] C
3 63 64 s 66 7 0 0
4 83 b4 6 66 8 0 4]
S 63 65 3 13 0 0 0
6 63 65 4 14 0 0 C
7 69 15 66 9 3 13 0
8 69 1¢ 66 10 4 14 0
9 7 11 17 19 0 0 0
19 8 12 18 20 0 0 0
11 9 13 19 G 0 0 0
12 10 16 20 2 0 J o
13 7 11 B 65 0 0 C
14 8 12 é 68 0 C D
15 17 7 69 'S} 25 0 o
16 18 8 69 42 26 ] =

17 15 19 9 25 21 G
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TABLE 2--Continued

FR—

Node Nodes Connected To
; 18 16 20 10 26 22 0 o) :
' 19 1 17 21 23 33 9 o ;
l 20 12 18 22 26 34 10 0
i 21 17 19 27 29 2 2 o}
! 22 18 20 28 30 0 e 0
i 23 19 27 31 0 0 0 0
| 24 20 28 32 0 0 0 o
; 25 15 17 41 43 45 27 0
. 26 16 18 42 46 46 28 0
; 27 21 23 s 25 47 0 9
i 28 22 24 36 26 48 0 0
! 29 21 33 s 37 0 0 0
39 , 22 34 3¢ 38 o) 0 )
f 3] 33 35 23 39 0 0 0
| 32 34 36 26 40 0 0 0
! 33 29 31 19 37 0 0 )
| 36 30 32 20 38 0 0 0
i 35 - 29 31 39 27 o} e 0
l 36 30 32 40 28 0 0 c
} ! 37 33 39 29 0 0 0 0
i 38 34 %0 3c 0 0 0 0
, , 3% 37 35 31 0 0 0 0
ﬂ? ! 40 38 36 32 0 0 0 0
' ! 4! 70 15 49 25 43 0 )
4z 70 16 50 26 44 0 0
43 “1 25 “S 47 49 75 74
44 w2 26 46 48 50 75 74
45 25 “3 &7 0 0 0 0
46 26 44 48 0 0 6 0
47 27 “3 4% 74 75 e 0
%8 28 46 45 74 75 0 9 :
49 41 61 51 513 43 57 0 L
50 42 62 52 56 44 58 0
; 51 49 55 57 71 ) 0 o}
| 52 50 56 58 71 0 o} 0
53 %9 55 59 78 0 0 0
| 56 50 56 60 75 0 0 )
{ 55 51 53 59 0 0 0 0
: 5S¢ 52 54 N 0 0 o e
1 57 59 “9 51 0 0 0 2
| 58 60 50 52 0 0 0 0
f 59 57 55 53 0 0 c 0

;
!
:
§
i
1
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TABLE 2-~Continued

Node Nodes Connected To
1
%) 58 56 54 o 2 ol 3
: 51 7C 71 72 «9 o e n
i 62 70 3] 72 5C c 9 c
| 63 64 3 A 5 6 65 3
i A 63 66 3 & 0 0 0
| 65 63 5 & 69 o c 2
i 66 6l 67 7 8 3 4 0
! 67 | 66 69 0 0 0 C 0
z 68 55 76 13 14 0 0 3
| 69 67 70 7 G 15 16 0
; 70 69 2 61 62 41 62 ¢
71 73 T4 61 52 51 52 C
72 70 73 61 62 0 0 0
73 72 71 C C 0 C 9
T4 71 47 48 42 His C C
78 76 47 48 43 44 53 54
76 77 78 1 2 68 75 o
77 76 79 1 2 0 5 o
78 76 79 1 2 o 0 0
79 77 78 1 2 6 0 o

The trailing zeroes in the rows of the connection matrix of
Table I1 show that no more nodes are connected to the node representing
that row. For example, node 77 i~ only connected to the nodes 76, 79,
1 and 2.

Similar measurements were made for nodes selected for the other
two aircraft. The body of the Mirage is less ~omplex in shape than
those of the Phantom and MIG aircraft, and therefore it is only nec-
essary to select 59 nodes for the Mirage. The coordinates of the nodes

and their connection matrix for the Mirage and MIG aircraft appear he-

low in Tables TII throuesh VI,
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TABLE 3 I
COORDINATES OF THE NODES FOR THE MIRAGE AIRCRAFT ;
(With Respect to Its Center of Gravity and in Feet) I
Node X y z I
1 23."8 0-15 -0.02
2 23 .48 -3.15 -0.02 I
3 18,62 1.56 -0.02
| [A 18 062 "1.56 —O -UZ
: 5 12.80 1.5C -2.95% I
6 12.80 -1.50 -0.95
7 12.80 2.76 -C.29
8 12080 "2076 -0029 -*
9 12 .80 2.76 1.12 l
10 12.80 -2.76 1.12
11 12.80 1.50 1.51 -
12 12.80 ~1.50 1.51 i
13 5,30 1.14 -1.76 -~
14 5.30 -1.14 -1.76
15 6.11 2.73 -C.68 -
16 6-11 -2 -73 ‘Q 008 -n
17 6.71 3.39 1.57
18 6.71 -3.39 1.57 -
19 -2.17 0.90 -1.58
20 -2.17 -0.90 -1.58 .-
21 -2.59 1.74 -1.064 »
22 -2.59 -1.74 -1.07
23 -4.51 2.52 2.38 -
24 ~-4.,51 -2.52 2.38
25 -10.62 12.63 3.25 -
26 -10.42 -12.63 3.25 3
27 -4.51 2.52 2.74
28 -4 .51 -2.52 2.74 -
29 -11.11 0.33 -1.34
30 -11.11 -0.33 -1.34 oy
31 -10.60 1.89 -0.213
32 -10.60 -1.89 -0.23 b
33 -13,18 3.09 2.38 -
34 -13.18 -3.09 2.38
35 -12.49 12.63 3.25 -
36 -12.49 -12.63 3 l
37 -16.93 1.62 ) I
38 -16 .